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1. Summary

In higher education, course objectives are seldom explicitly

stated. Consequently, it is almost impossible to indicate

which objectives have been attained by the students at the

end of a course. Thus, there is often a need to establish,

post facto, which objectives were pursued by the teachers

and attained by the students. This need is especially important

where a new instructional method is weighed against the usual

one or where the identification of critical impact points
9

for improving an existing instructional method is the intent.

An analysis of course examinations over several years can provide

good insight about the objectives teachers have pursued, because

the examination items can be considered operationalizations of

the pursued objectives. And, 1.)17 analyzing achievement on the

examination problems, it is possible to determine which objectives

the students have attained.

In § 3 of this paper a method pretaining to objective indentifica:ion

and analysis will be discussed. Thus a framework will be developed

by which post facto objectives can be determined and students'

attainment of the objectives can be assessed. The method can also

be used for examining the quality of instruction (see § 5).

Using this method, we are able to determine mathematics course

objectives and attainment of the objectives by the group of

students who passed the course (see § 4). The results of this

study are based on first-year engineering students in the period

1970-1973, using "open question" examination formats. The explorative
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character of this research suggests that conclusions from the

data have to be considered illustrations of the type of questions

that can be analysed within the proposed framework.

2. Research-questions.

In this paper, we discuss only a few of the research questions

that could be discussed in the context of a retrospective analysis

of implicit objectives.

The central question is: what objectives were attained by the

students, who passed the course? Several questions can be

distinguished form this general question:

1. How can the pursued objectives be made explicit, so that they

can be discussed as well on content levels as on behavioral

levels?

2. What were the objectives (on both levels) pursued in the

mathematics ccuzses?

3. What were the objectives (on both levels) the passed students

attained?

4. Were in the examinations the number of items, which are

operationalizations of the objectives attained by the group of

passed students, such a proportion of the respective examination,

that based on the scores on these items a passmark could obtained?

If not, is it possible to characterize the not-attained objectives,

of which then must be concluded that the passed students have not

or only partially attained them?



The relevance of these research questions comes from the situation

that passed students (i.e. students with a pass mark) are considered

to have attained course objectives, while often in practice evidence

about this assumption is not considered.

Ideally, questions pertaining to the attainment of objectives should

be answered within a research design in which all the items from

different examinations are connected by calibrating them on the

same scale. For this it is necessary either to present some items to

persons from different groups or to calibrate afterwards all the

examination items on one group. In practice this requirement can not

be met, so a retrospective analysis, in which plausible assumptions

are made, is needed to answer the above questions.

3. Method of research

In this section we introduce the method of research which will be

applied in the next section as a procedure by which the research

questions can be answered.

Considering the first question, we propose a two-dimensional grid

fitting the situation of examinations based on implicit objectives

(§ 3.1.). After having classified the examination items within

the grid,question 2 can be answered (§ 4.4.). To address questions

3 and 4, it is necessary to introduce in § 3.2. such constructs

as: (1) item in an "open question" examination, (2) the mastery of

an item by a student, and (3) measure for attainment of an objective.
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The method for conducting the retrospective analysis of course

objectives is based upon the analysis of examinations results,

which may be influenced by several sources of variation. These

sources and some assumptions are discussed in- 3.3., the method

of analysis in § 3.4.

3.1. Grid of objectives

The items or problems in course examinations can be considered

operationalizations of the pursued objectives. Each item is

the operationalization of a particular objective, that may be

described on two dimensions: (a) content and (b) behavior.

Content refers to specific substantive elements in the body

of knowledge. If the content levels are formulated toospecifi-

cally, items may be a composite of several objectives. Besides,

then a too large number of cells should be generated so that per

cell not a meaningful number of items will be obtained.

Therefore, the content levels must be formulated broadly enough

to enable an unambigious classification and a meaningful inter-

pretation. This can be done by using general terms, such as chapter

titles from text books or main topics from the subject field.

For the behavioral dimension, several classifications are

available in the literature (e.g. the taxonomy of Bloom (1956)

for the cognitive domain or its elaboration for mathematics by

Wilson (1971). However, it is essential that the intellectual

skill domain is as exact a classification of the measured

0
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behaviors as possible. Since the analysis of objectives starts

with examination problems, then the nature of these questions

must be reflected in the behavioral levels. Therefore, we

have chosen as a classification system the main categories

of Polya (1957), who distinghuishes between "problems to

find" and "problems to prove". In each of the two categories

some levels are defined, reflecting the different levels of

difficulty of the examination problems (see § 4.2.)

The cells of the grid and the row and columm totals should

be studied as starting points of the analysis. Since examina-

tions are samples of content and intellectual skills, it is

much more likely that the cells of the grid will be representative

of the course objectives if a number of examinations is aggregated.

Then, not only a good impression of what objectives were pursued

can be obtained from the grid, but also from the number of items

per cell and per marginal total an impression of the relative

importance of the respective objectives. A caution should be

noted. Empty or sparingly filled cells do not necessary mean

that the objectives for the cells were not pursued; such cells

may appear e.g. if there is some hierarchy within the colums

or the rows, so that some objectives are implicitly included in

other objectives.

3.2. Definitions

An item or problem is the smallest unit in an examination to

which a separate score will be given by the corrector and which
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can be solved independently from the other problems in the

examination. That means that so called 'pile'-questions (i.e.

questions of which the solution is dependent on the results

of one or more preceeding questions) will be considered as

one item or problem. The m items in a cell are noted as

v (i= 1, 2, ...,A).

Student j has mastered item vi if his score on vi is more than

a certain fraction of the maximum score S.; in other words if

his score S..
tj

on v. applies to: S. S. with 0 a 1.

In every application of the method, the value of the parameter

a vast be chosen. This choice will depend on 'local' factors

like the character of the objectives of a particular course

or judgements about the appropriate level of mastery.

Attainment of an objective will be defined with the help of

the definition of mastery of an item by single students.

By introducing the parameter a, the score of a student on an

item is dichotomized. This can be made explicit by stating a

1 it S. /S. 3 a and a o if the reverse holds.
tj

A measure of attainment of an objective operationalized in the

item v
i

is the ratio:

pi
number of students with a 1 on vi

total number of students on v
i
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3.3. Assumptions and sources of variation.

Students differ in their capability for mathematics. If we indicate

with U the continuum underlying the ability of students to solve

mathematics problems, then every student has a porition on

this continuum, and it is meaningful to assume a probability

distribution g(0) for the group students.

The quantity pi, introduced above, is an estimation based upon

one item of the stochastic variable r , the true measure of

attainment of the objective represented by the cell of the grid

from which the item is drawn.

Consider a cell of the grid with items vi with pi (i= 1, 2, ..., m).

Generally, the pi (i= 1, 2, ..., m) in a cell will differ. Apart

from influences Ly chance, this should not be the case because all

the items in the cell are operationalizations of one objective.

Important question= are: (a) how do we explain this variation and

(b) how do we combine the information from all the items in a cell

and to interpret this on one scale as a measure for the attainment

of the objective represented by that cell. Three sources of variation

can be considered: (a) students, (b) instruction and (c) items.

Students differ in ability, preparation, attitude, etc. The

quality of instruction is influenced by different teachers

personalities, teaching-styles, instructional procedures, etc.

Since these two types of variation can be considerable and will

influence the shape of g(0) it is important to aggregate different

course e,:aminations where as little variation has occurred as

11



possible. We assume that the combined influence of both sources

is constant over the considered period of time and that g(0)

has the standard normal distribution .(0) (Assumption 1). The

first part of this assumption is plausible in situations in

which, over the period of time during which a course will be

studied, nothing has been changed with respect to (a) the

entry requirements, (b) the preceeding instruction, (c) the

group of executive teachers, (d) the instructional procedures,

(e) the basic textbook, etc.

In the third source of variation, items may differ in difficulty and

use of enabling skills, etc. Moreover, in the situation of the

retrospective analysis, the items come from different examinations,

taken by different groups of students (from the same population).

Considering the practice of aggregating examinations, it follows

from the first assumption that differences in p-values in a cell

are due to differences between items. Thus, for a cell of the

grid the pi(i= 1, 2, ..., m) not only pertain to a measure of

attainment of the objective as represented in the respective

items v
i

(i =1, 2, ..., m), but these values also reflect

differences in the difficulty of the items.

Psychometric properties of an item v
i

can be described by the

item characteristic curve, i.e. the chance P (110) to master v
i

given the abilisy level 0 (see figure 1). It seems not unreasonable

12
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Insert fugure 1 about here (see page 32)

1970) to assume that the item character t'c curves have

the normal ogive form, i.e. they have the mathematical properties

of a normal cumulative distribution (Assumption 2). See for a

discussion of the normal ogive model Lrrd & Novick (1968).

The normal ogive item characteristic curve of vi has a point

of inflection at 0 = b
i

(see figure 2). At this point of the 0-

scale the probability of a correct answer is .50; bi is called

the difficulty of the item vi

Insert figure 2 about here (see page 32)

Lord and Novick (1968, p. 375) show that from assumptions 1 and

2 follows that bi = zi /pi, with p biseral correlation between

the dichotom4.zed itemscore and 0, while z
i

is defined by

+

ni f 0 (0) d 0
zi

in which the stochastic variable n is estimated by pi (i= 1, 2,

...,m);.is called the discriminating power of item vi.

For all the items within the analysis, we assume that the

discriminating power pi is the same, i.e. pi=p (Assumption 3).

By this,p has become a scale factor which can be left out of

consideration. Thus, we may write: bi = zi, in which zi is

;lc
','
-,_,:

3



estimated via the above formula using pi.

In b
i
=z

i
we have for each item v

i
a measure of difficulty on the

same quantitative scale 0. Earlier in this section, we saw that the

values pi of the respective items vi(i= 1, 2, ..., m) not only are

an estimation of a measure of attainment of the objective represented

by each vi, but also reflect the differences in difficulty of the

respective items. Now, we can not only interpret zi(i= 1, 2, ..., m),

estimated via pi, as a measure of difficulty for item vi, but we

can also take the line that the z
i
pertains to the attainment of the

objective operationalized in the respective items vi. This result

will be used in the next section.

Assumption 3 can be tested by correcting, for each item vi, the

item-test correlation for attenuation and spuriow..less and checking

if these are the same for all items. However, thus is not possible

in the situation of a retrospective analysis because the students

did not take all the items, since different examinations were taken

by different students.

3.4. Measure for the attainment of objectives

In this section, measures for the attainment of objectives by the

students will be discussed. We will discuss the cases of cells with

only one, respectively at least two items. In each case the criterion

for attainment of the objective has to be chosen; this is a matter

of rational judgement.

14
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a. Cells with 1 item.

At the end of §3.2. a measure p of attainment for an objective

operationalized in an item v was introduced. In this case, it

is easily to define (without needing the assumptions of §

the students have attained the course objective represented

by item v if p 0 with 0.1 13.11. For example we may judge

that a given objective is attained if at least 75% of the

students have reached the chosen level a of mastery of an item

(thus = .75) .

b. Cells with more than 1 item.

Before discussing the two approaches, we shall define several

notations with respect to a particular cell of the grid:

- items

- number of students (generally

1
v
2

, es.,
m

different for each item) Ni, N2, ..., Nm

- number of students that

master an item : ni, n2, ..., nm

- measure of attainment of

= i/N.an item; p
i

n
: Pl. P2, pm

L1. Referring to the definition of pi of each item vi and to

the case of a cell with 1 item, we can consider all the

items which apply pi 13. Let us denote by x the number of items

from vi, v2, v
m

f,r which the students have attained the

chosen level of mastery a for each item. We define as follows

-_5
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The group of students has attained the objective if! ,

which 0 y .1 1.

The choice of Y is againbyjudgement. By choosing this

definition of attainment, cf the assumptions in § 3.3. we

only need the first part of assumption 1, viz. that the

combined influence of the sources of variation (a) students

and (b) instruction is constant over the considered period

of time.

Note that in this definition only the number of problems

by which an objective is operationalized is considered. It

is possible that the value of m could be very small, by which

the application of this measure is not very meaningful.

Example: If m=1, then ! can be only 0 or 1. If m=2, then

can be only 0, Is or 1.

By taking into account only the number of items, all items

have equal weight in the procedure. Use is not made of the

fact that different numbers of students are performing on

the respective items. Thus, the score of a single student

performing on an item taken by a small number of students has

a relatively greater weight than in the case of an item taken

by a greater number of students. This will not be a problem

if. (a) all the items are of almost the same difficulty (i.e.

the values p1, p2, ..., pm are almost equal) or (b) the

6
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numbers of students taking the respective items are almost

equal.

In educational practice those conditions are not always

fulfilled. An example will help to illustrate the point.

Let an objective be operationalized in three examinations

in three different items and let the number of students in

these examinations be 300, 400 and 40 respectively. This is a

realistic situation in our university. Moreover, let us

ar,ume that only one item is attained (p40) by the group

of students. If the attained item is the one made by the

group of 400 students and the two not-attained items are

those in the examinations with the smallest number of students

than, considering the whole population of students it may be

reasonable to regard the item presented to the large group

as a more representative operationalization of the objective

than the two other items.

From this point of view, it is desirable to look for a procedure

in which not only the difficulty of the items, but also the

number of students taking the items will considered.

b2. To arrive at a procedure for which the two conditions are

fulfilled the assumptions of § 3.3. are needed. There, we saw

that for each item v (Jug 1, 2, ..., m) in a cell we have a z

estimated by pi via the transformation
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zi

where f(0) is the standard normal distribution. The zi

1, 2, ..., m) can be found in a table of the standard normal

distribution. It was concluded that z
i
is not only a measure

of difficulty of item vi, but also refers to the attainment

of the objective operationalized by vi.

By computing for each cell

Z E N

i=1 E N
i=1

the different numbers of students per item are taken into

account. Moreover, the weighted mean ze of difficulties can

be considered as representing the average difficulty of the

items about the objective students are expected to attain.

By means of the inverse transformation at each 21, a value

p
*

can be found. This p can be interpreted as a sort of

'mean' value of the pi's for the items in a cell. Note,

that p* , as the transformed of the weighted mean of zi's,

is not the same as the weighted mean of the pi's.

For each objective, corresponding to a cell of the grid,

PI can be interpreted as a measure of the attainment of the

objective. Therefore, we define:

The group of students has attained the objective if pa 4 13,

with 0 R 1.
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Consistent with other parameters, the choice of S is a

matter of judgement.

Note, that the case of one item per cell is a special

case (viz m= 1) of this.

4. Application

4.1. Available data.

We have analyzed the mathematics courses for first year

engineering students at our university in the first three

quarters of 1970/71, 1971/72 and 1972/73. Of each course the

examinations at the end of the quarter, immediately after the

teaching period, and at the end of the course year are

analyzed.

In § 2 we pointed out that in this analysis the central

question is: what objectives were in fact attained by the

group of students which passed the examinations. Thus the

method to determine the attainment of objectives was applied

to this specific group.

The data for this retrospective analysis were collected in

1976. It appeared, that not every teacher of mathematics

classes had saved the list with scores of the students on

the respective problems. So, the analysis could only be

applied on a part of the students that took the examinations.

Table 1 contains the number of available data per examination.

19
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Each examination wr.s labeled with a number. The first digit

indicates the quarter of the course year in which the

mathematic', course was given. The second digit indicates

the several examinations of the particular course.

Insert table 1 about here (see page 33)

From table 1 we see that the available data on some examinations

were very small. Therefore, the analysis of what objectives were

pursued is based upon all the examinations, but the analysis

of what objectives were attained is only applied on those examinations

with at least 15 passed students.

In § 4.5., the measure for attainment of objectives discussed in

§ 3.4. under b2 is applied. With respect to the assumptions

discussed in § 3.3., the following can be said. Assumptions 2 and

3 are underlying the analysis, their fulfilment was presupposed.

The first part of assumption 1 is plausible for the considered

mathematics courses in the period 1970-1973, because in this

period there were no changes in the entry requirements, the

preceeding instruction (second...fy school), the group of executive

teachers, the instructional procedures (lectures and practice

sessions) the basic textbook, etc. Finally it was assumed for

the group of passed stut. its that the variable 0, expressing

the ability to solve mathematics problems has a standard normal

distribution.

From these considerations we conclude that the results of

A0
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the analysis will have no general validity. They must be

considered mainly as illustrations of the possibilities of

the method.

4.2. Grid of objectives.

The problems in the examinations where distributed over the

following content categories:

1. Mathematical induction;

2. Limits (of sequences; functions of one variable: continuity,

differentiability, computing of limits. theorem of l'Hopital);

3. Differential calculus (finding the derivative, linear

apprc:dmation, mean value theorem, extrema, points of inflection);

4. Integral calculus (primitive fuaction, Riemann sum, definite

integral, length of arc, area and volume of surfaces of

revolution);

5. Functions of two variables (continuity, differentiability,

partial derivatives, linear approximation);

6. Differential equations (different types of first order equations);

7. Series (tests for convergence and divergence, power series,

series expansions of functions, Taylor's formula, computation

with series);

8. Improper integrals (tests for convergence and divergence)

These categories reflect the main topics in the three

mathematics courses. The categories 1, 2 and 3 refer to the first

quarter course: mathematics I, 4, 5 and 6 to mathematics Hand 7

and 8 to mathematics III. The number of categories is such that each
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item could be categorized unambigiously according to content,

while yet each category contains a meaningful number of items.

Indicated in § 3.1. is the classification in levels of behaviour

using the main categories of Poyla (1957), who distinguishes

between "problems to find" (F) and "problems to prove" (P).

Additionally a rest category, "reproduction" (R), was used.

F. Problems to find

The items in this category are characterized by "compute"

"determine", "find" and/or "approximate". Three levels have

been distinguished:

FI: elementary problems, solved with only one standard method

(i.e. a for the students well known method);

F2: problems solved by using several standard methods after

each other or by using a standard method after a non-trivial

re-formulation of the problem;

F3: problems solved with non-standard methods (i.e. new problems).

P. Problems to solve

These items are characterized by words as: "prove" or "examine

if ...". We distinguish four levels:

P1: problems indicating which definition or theorem must be

applied and/or which standard type of proof can be used;

22
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P2: problems wherein the theorem to be used is not given and/

or a non-trivial re-formulation of the problem is necessary

as a first step;

P3: problems in which several definitions, theorems and/or

standard types of proof must be used (i.e. new problems);

P4: proofs of generalizations or specializations of well-known

theorems, of which it can be expected that the students have

not learned them by heart.

R. Reproduction

This category is not further subdivided.

4.3. Categorization of problems

To indicate how we have interpreted both type of categories of

the preceeding section, we offer some examples in this section.

It appeared that it was not always easy to put the items in a

behavioral category. Sometimes it was difficult to distinguish

between the categories Fl and P1; e.g. the differences between

problems to prove and problems to find on 7 series fade away

because the use of a test for convergence or divergence is in

fact the computation of a standard limit. Or: finding an interval

of convergence of a power series is in fact fully analogous to

examining the convergence of a series with fixed terms.

0
r)
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4.3.1. Examples of problems to find.

Fl: integral calculus; p = .85

Find:
r i+x

2

dx.

x
2
(1-x)

F2: differential equations; p = .63

Solve: a 2 2
y = y + xy +

Fl: series; p = .86

Find the interval of convergence of

F2: limits; p = .76

Given the function f with

co

nx
1

n=2
In x

f(x) =
In x

, x>0.

1+1ex

Define f in the point 0 so that f has right hand continuity

in that point.

F2: differential calculus; p = .64

Given the function f with

2 1
f (x) = + -ln (x+1)

2.

x-1 2

Find the extrema, points of inflection and asymptotes; find the

intervals on which f is increasing and decreasing and also the

intervals on which the graph of f is concave upward and concave

downward (using the second derivative method). Sketch the graph

of f.

24



4.3.2. Examples of problems to prove.

PI: functions of two variables; p = 0.33

Prove:

P1: series; p = .86.

2 2
lim 2 -0
x40 x

2
+y

Y+0

Examine the following series for (absolute) convergence or

divergence:

P2: limits; p = .25.

Given the function f with

Prove that

(_1)n-1 n
2
+3n+5

n=1 2n
2
+4n-1

f (x) = x-x
ln x

, x > 0

=0 x 0

lim f(x) =0;

x40

find the right hand derivative in 0

P2. series; p = .25.

The n-th term of a series is given by

Prove the convergence of

n+I
r dx

n
n

__
x +1

t .

n=0
n

P4: differential calculus; p = .35.

A function f is three times continuous differentiable with f(0) = 1,

f(1) = 2 and f'(0) =I. Prove, using the mean value theorem, that

there is a point a with 0 <a<1 such that f "(a)= 0.

25
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4.4. Pursued course objectives

The result of categorizing the examination items within the

grid is summarized in table 2

Insert table 2 about here (see page 34)

By analyzing information in this table, some important

conclusions pertaining the pursued objectives can be derived:

a. Apparently, in examinations the mathematics teaeners laid

stress on an operationalization of the objectives mainly on

levels Fl, F2 and P1 and, to less extent, P2. The remaining

categories ("new problems") did not or seldom appear.

b. The grading of mathematics examinations uses compensatoric

model, i.e. a student gets a pass mark if his examination

score is at least 55% of the maximum score. From table 2

we concluded that a student could receive a pass mark if

he disregarded preparation for problems on the level of

P2, P3 and P4. This means that while higher level problems

were inde = liscuased during the lectures and discussion

groups, the department of mathematics accepted that students

needed only take cognizance of the higher level objectives,

but that they did not need to master them.

c. Less attention was paid to "problems to prove" then to "problems

to find". Exceptions were the content categories 7 "series" and

8 "improper integrals". But in section 4.3. we have pointed out

the difficulty with the categorization of the problems on series;



since the relationship between tha problems on improper

integrals and the indicated problems on series, the same

held to the category improper integrals.

d. The row totals reflect the relative importance of the

respective content categories. Two comments have to be

made: (a) category 1: mathematical induction was indeed a

small topic, only treated on the level P1 and (b) the

numbers in categories 7 and 8 were based upon four examinations,

the remaining upon three examinations.

4.5. Attainment of course objectives

In table 3 the computations according to the method b2 in § 2J.4.

are summarized. The results are based on a portion of the

examinations (see table 1). The raw data are presented in the

appendix.

Before discussing conclusions from an analysis of table 3, some

parameters have to be discussed.

The choice of the parameter a for mastery of a problem (see

3.2.) by a studeat was a=.66. The rationale behind this choice

is the following. Most of the essay problems in the examinations

had a maximum score between 2 and 5 points. A student who made

a minor error, e.g. in the computation or in the wording of the

solution, would not get the maximum score. However, we could

assume he/she understood the solution of the problem.

In this case the score on a problem was often 115 out of 2 points

2 out of 3 points, 3 out of 4 points, etc. i.e. a score of at

least .66 of the maximum score.
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In § 3.4. we discuss two measures to express whether thr' group of stud Tits

has attained its goals or not. For reasons explained in § 3.4.

we will choose p
*

, defined in that section, as measure for the

attainment of the goals. This measure expresses how well the

group of students, in this paper the group of passed students,

has attained the course objectives.

When have the passed students attained the objectives? From

table 2 we have concluded, that in the mathematics courses

primarily objectives on the levels Fl, F2 and P1 were pursued,

and, to a less extent, level P2. The other levels were so scarcely

represented in the examinations that earlier on is concluded that

those leve's were not pursued. Restricting ourselves, therefore,

to the levels F1, F2, P1 and P2, we chose as criterion for

attainment of an objective B = .75. Thus, if in a cell p* %, .75 was

recorded we said that the objective was attained by the group of

passed Ltudents.

Now, from table 3 some important conclusions were drawn pertaining

to the attainment of the objectives by the group of passed students.

Insert table 3 about here on separate page (see page 35

a. All the objectives, but one (viz. (3, F2)), which were

attained by the group of passed students (pill: .75) appeared

to be of the type F1: elementary standard problems to find.

Looking at the columns, only the group of objectives Fl was

attained by the students; although one cell was clearly not

attained.

28
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b. None of the objectives on the level of P1 and P2 was

attained, although some cells were close to the criterion.

c. Because the row totals in table 3 were computed over different

behavioral levels, itwasnot useful to apply the criterion

of attainment of an objective on the row totals. From the

last columm of table 3 can be seen that there were poor revalts

on 1. mathematical induction, 2. limits and 5. functions of

two variables.

d. Because the Fl-type problems form usually less than half the

number of items of an examination an interesting conclusion

could be drawn with respect to the considered group of students.

Although the passed students performed well on the attained

problems of type Fl, their score on these problems was

usually not sufficient for getting a pass mark on the examinarion.

To get the pass mark on the examination of the course every

student has to master several of the objectives of which we

concluded that they wer attained by the whole group of

passed students. This means that teachers of following courses

must take into account the fact that the group of students

had attained only a relatively small part of the course

objectives for courses which are prerequisites for his/here

courses. This means that apparently it is the practice of

mathematics education within the Department of Mathematics to

accept passed students who may not have attained most of the

course objectives but only taken cognizance of them.

29
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5. Discussio,

The procedure for a retrospective analysis of course objectives

is not a test in a statistical sence. It is meant as an attempt

to bring some order in an unsurveyable amount of exan.inatio'

results, so that discussions on these results will be possible.

Then, discussions on the objectives of courses can be conducted

using arguments which are based more upon objective data then

personal feelings and impressions of teachers.

In the preceeding, we have discussed the questions: (a) which

objectives were pursued in the mathematics courses and (b) which

of them were attained by the students with a pass mark. The answers

to the first question are important for improving the considered

mathematics courses. The answers to the second question are

important in connection with the construction of following courses

of which the concerned course is one of the prerequisites. With

this procedure we can indicate a general knowledge base upon

which teachers if following courses may build upon.

We have considered the passed students of every examination. No

distinction was made between examinations immediately after the

teaching of the course and examinations later on in the year

(a "second opportunity"), because the students who failed the

examinations immediately after the course were provided an extra

opportunity. Therefore, in our choice of the subgroup of students,

the "passed students", no one was counted twice.

30



Some concluding remarks and points for further research have to

be mentioned.

1. Under the assumptions presented in § 3.3. per cell, the

measure of attainment p* of an objective is computed in § 3.4.

via the transformation zli *+p . The transformations are carried
i i

out via the cumulative standard normal distribution. From a

table of this distribution can be seen that p varies alsmost

proportionally with z outside the trials of the distribution.

Thus, to get a quick impression of the results the weighted

means of pi-values can be computed, as long as the areare not

too small or too large.

2. The number of items per cell will influence the accuracy of the

estimation by p* of the true value of the measure of attainment

of an objective. How to bring this element into the method

discussed in § 3.4. has to be studied.

3. The method presented in this paper can also be applied to

examine the quality of instruction. Then, the measures of

attainment of an objective have to be interpreted as measures

for the quality of instruction. The examinations immediately

after teaching of the course have to be analyzed for all the

students who took them.
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Appendix

This appendix contains the data upon which the retrospective analysis

of the attainment of objectives is conducted. The data are gimped

per content category. The colums are consisting of:

a. the behavioral levels Fl, P1, etc.

b. per item vi the number Ni of students that passed the examination

to which the item belongs.

c. per item vi the number ni of students that masters the resp. items

From these data table 3 can be derived: the number of items can be

counted, per item pi =ni/Ni can be computed, etc.

1. Mathematical
Induction

a b

Limits (cont.)

a b c

Differential
Calculus (cont.)

a b c

Integral
Calculus (cont.)

a b
c

15
P1 40

17

13

28

9

11

8

16

P1 28
17 6

28 17

28 5

Fl 17

(cont.) 28
17

13

27

15

Fl

(cont.)

53

18
18

18

18

18

53
53

18

44

15
13

13

8
16

45

49

15

P2 17 3

40 10
F2 17

28

40

40

17

28

12

26

38

21

14

18

2. Limits

a b c

P3 17 0
Fl 40

17

28

17

17

28

14

8

9

7

13

22 1

P4 17 4

F2 53

53

53

18

18

78
53

18

11

31

24

14

11

5

29

18

3. Differential
Calculus

a b c

P1 28 12

P4 40

17

14

8

F2 17

28
17

14

17

17

11

15

13

19

9

8

Fq 40 38
17 14

17 11

17 14

17 11

17 16

4. Integral

Calculus
a b c

Fl 18

14

14

6

3 3
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Integral
Calculus (cont.)

a b c

Differential
Equations (cont.)

a b c

Series
(cont.)

a b c

Series
(cont.)

a b c

P1 18 15

18 5

18 10

F2 53

18

18

18

39

12

16

10

Fl

(cont.)

50

87

36

42

75

21

P4 50

38

38

10

16

13

5. Functions of
two variables

a b c

50

42

10

10

8. Improper

Integrals

a b c

P1 18 5
F2

7. Series

a b c

P1

1

50

38

87

38

87

50

50

38

38

87

31

54
33

30
75

41

35

29
12

Fl 18 15 Fl 38 37

P1 18 5 Fl 50

38

87

87

87

72

50

50

38

36

38

44

27

75

55

72

9

44

33

31

33

36

.

P1 87

50

50

50

38

38

61

47

29

21

18

28

P2 18 6
18 3

6. Differential
Equations

a b c
62 P2 50

38

21

6P2 87

87

50

62

52

35

Fl 18 15

53 36

34



1.00

.80

.60

. 40

. 20

.00

1.00

.50

. 00

-32-

Fig. 1: Item characteristic curves
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Fig. 2: Normal ogive item characteristic curves.
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Tabel 1: Number of students per examination

exam.

number

*
11

*
12

*
13 14

*
15 16

*
21 22

*
23 24

*
25 26

*
31 32 33 34

*
35 36

*
37

number of

students
66 21 40 16 46 4 85 12 37 10 46 21 107 4 38 23 104 31 55

passed

students
40 17 17 12 28 3 53 5 18 8 18 7 87 3 10 13 50 14 38

*)These examinations are used in the analyLis of attained objectives.

`16
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Table 2: Number of items per objective.

Problems to find Problems to prove

Reprod. Total

Fl _ F2 F3

'Dotal

F P1 P2 P3 P4
Total

P

1. mathematical induction - - - - 4 - - - 4 - 4

2. limits 9 11 - 20 7 4 1 1 13 3 36

3. differential calculus 16 10 - 26 1 1 - 4 6 - 32

4. integral calculus 18 15 - 33 3 - - - 3 - 36

5. functions of two

variables
6 - - 6 2 6 - - 8 - 14

6. differential equations 7 7 - 14 1 - - - 1 - 15

7. series 28 7 - 35 20 10 1 4 35 - 70

8. improper integrals 2 1 - 3 10 2 - - 12 I - 15

Total 86 51 - 137 48 23 2 9 82 3 I 222



Table 3: Results of the retrospective analysis

Fl F2 P1 P2 P3 P4 Total3)

m
1) *2)

P * m *p

1. mathematical induction - - - - 4 .44 - - - - - - 4 .44

2. limits 6 .50 6 .55 4 .41 2 .23 1 .00 1 .24 18 .46

3. differential calculus 9 .88 6 .80 1 .43 - - - .00 2 .39 16 .82

4. integral calculus 11 .82 8 .56 3 .57 - - - - - - 22 .69

5. functions of two

variables
1 .83 -

P

- 1 .28 2 .24 - - - - 4 .40

6. differential equations 2 .72 4 .73 1 .59 - - - - - - 7 .69

7. series 14 .77 2 .22 10 .73 3 .67 - - - - 29 .71

8. improper integrals 1 .97 - - 6 .68 2 .10 - - - - 9 .(7

Total 45 .78 26 .60 30 .65 9 .48

1) m is the number of problems in which the objective is operationalized.

2) p* the measure for attainment of the objectives by the group of passed students (see g 3.4.)

3) only based upon the Fl, F2, P1 and P2 columns.

`I8 `19
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